Notes on the geographical variation of Hipparchia autonoe (Insecta: Nymphalidae: Satyrinae) with description of a new subspecies from Qinghai (China). In book: Hartmann M, Barclay...
Notes on the geographical variation of *Hipparchia autonoe* (Insecta: Nymphalidae: Satyrinae) with description of a new subspecies from Qinghai (China)

Valerio Sbordoni, Gian Cristoforo Bozano & Donatella Cesaroni

Summary

Hipparchia autonoe (Esper, 1783) is a Palaearctic species showing a wide-ranging geographical distribution from the Caucasus to Tibet across the south of Siberia and Mongolia to Far East Asia and the north of China, and a considerable degree of phenotypic variation. This note focuses on the area that includes the highlands of Qinghai, Tibet and Gansu, where different phenotypes and races fly at a relatively short distance from one another, demanding both a taxonomic revision and a biogeographical interpretation.

In particular, we describe *H. autonoe* arcellae n. ssp. from Qinghai, and resurrect the taxon *H. a. extrema* as a valid subspecies, formerly synonymized by Kudrna (1977) with the nominotypical subspecies. Both its distinctive wing pattern and male genitalia morphometrics support this interpretation.

From a biogeographical point of view, processes of vicariance and dispersal, similar to those reported on plants, could have affected evolutionary divergence of populations in refugia of the Qinghai-Gansu-Sichuan area followed by a recent demographic spread. The relatively greater uniformity of the Eurasian populations is also hypothesized to be the result of a quite recent expansion.

Zusammenfassung

Hipparchia autonoe (Esper, 1783) ist eine weit verbreitete paläarktische Art mit einem Areal vom Kaukasus bis Tibet, Südsibirien und die Mongolei bis zum Fernen Osten Asiens und dem nördlichen China, mit einer beträchtlichen phänotypischen Variationsbreite. Diese Art beschränkt sich auf ein Gebiet, welches das Hochland von Qinghai, Tibet und Gansu umfasst. Hier kommen verschiedene Phänotypen und Unterarten in kurzer Entfernung voneinander vor, was eine taxonomische Revision und eine biogeografische Interpretation erforderlich machte.

Key words: Lepidoptera, *Hipparchia*, new subspecies, geographic variation, China

Introduction

Within the genus *Hipparchia*, *H. autonoe* (Esper, 1783) is the species exhibiting the most extensive geographical distribution. Its distribution range extends more or less continuously from the Caucasus to Tibet through the south of Siberia and Mongolia to Far East Asia and north of China. Several names have been proposed to characterize taxonomically distinct populations and subspecies.

However, the diagnostic characters and the geographical delimitation of these taxa were not always clear. In a review of the genus, Kudrna (1977) inferred geographic variation of *H. autonoe* (Esper, 1783) as a long transcontinental cline ranging from Eastern Europe, through southern Siberia and Mongolia, to the Far East of Asia and the north of China. Consistently with this observation, this author synonymized most of the names of taxa, emphasizing that the significant individual variability obscured geographical variation of this species. Kudra recognized as distinct subspecies only a few peripheral isolates such as *H. celaeno* (Leech, 1892) in Tibet, *H. maxima* (Bang-Haas, 1933) in Gansu, and *H. zeuzitinis* (Seok, 1934) in the island of Cheju-do (South Korea), synonymizing all other forms with the nominotypical subspecies.

During a trip, many years ago to Qinghai and Gansu, G. C. Bozano and V. Sbordoni collected a series of well-characterized *H. autonoe* specimens showing a high degree of coherent geographic variation. The material was brought to Rome for genetic and morphological analyses. A statistical evaluation of the different population samples was carried out through male genitalia. After many years, we decided to return to these data, encouraged by the need to solve taxonomic problems while preparing a forthcoming issue on *Hipparchia* in the series “Guide to the Butterflies of Palaearctic Region” edited by G. C. Bozano, which involved the authors of this note along with John Coutsis (Sbordoni et al. 2018).

In this paper, therefore, we describe a new ssp. and discuss its relationships with the other populations of *H. autonoe* occurring north of Himalaya, in the highlands of Gansu and the Tibetan-Qinghai plateau.

Material and Methods

The material examined is deposited in the following private and public collections:

EGGE - Coll. E. Gallo, Genova, Italy
GCBMI - Coll. G. C. Bozano, Milan, Italy
MZUF - "La Specola" Museum of Natural History of the University of Florence, Florence, Italy
VSRM - Coll. V. Sbordoni, Rome, Italy
WEHE - Coll. W. Eckweiler, Frankfurt, Germany

Morphological measurements of male genitalia: Male genital structure were extracted and prepared, according to standard methodologies. 25 individuals from 8 sampling localities (Table I) were scored using a binocular microscope fitted with a tracking device. Four drawings were made of each male genital structure (20 x magnification), two from each side. For each drawing, 11 measurements (Fig. 1) were taken with a bow compass. As variables for the morphometric individual
Hipparchia autonoe arccellae n. ssp.

Plate A

Holotype: ♂ China, Qinghai, Haixi Mongolian-Tibetan Autonomous Prefecture, Burhan Budai Shan, Balong, m 3300 - 3700, Dulan County, at roughly 35°41'38''N, 97°15'55''E, 6-9.VIII.1990, leg. V.Sbordoni, deposited in the V.Sbordoni collection (VSRM code of the Global Registry of Biodiversity Repositories).

Paratypes: China, Qinghai, Burhan Budai Shan, Balong, m 3300 - 3700, 6-9.VIII.1990, 4 ♂♂ and 14♀♀ leg. et coll. G. C. Bozano, (Milano), 5 ♂♂ and 12♀♀ leg.et coll. V.Sbordoni; China, Qinghai, Burhan Budai Shan, Eastern Mountains, m 3700 – 4000, 6-9.VIII.1990, 3 ♂♂ and 1 ♀ leg.et coll. V.Sbordoni; China, Qinghai, Burhan Budai Shan, Southern Mountains, m 4000-4200, 6-9.VIII.1990, 2 ♂♂ leg.et coll. V.Sbordoni; China, Qinghai, Burhan Budai Shan, Balong m 3500, 6-8.VIII.1990, 7 ♂♂ and 11♀♀ leg. et coll. E.Gallo. China, Qinghai, Eastern Qilian Shan, North of Chaka Lake, m 3500-3700, 2 ♂♂ and 2♀♀ leg.et coll. V. Sborgoni; Chaka Nun, m 3400, 9.VII.1994, leg. J. Klir, coll. V. Sborgoni; China, Qinghai, Dulan, m 3500, 1 ♂ and 1 ♀ leg. A. Karbalaye, coll. V. Sborgoni; China, Qinghai, Qinghai Nanshan, Dashuiqiao vic. m 3500, 27.VII.1990, 1 ♀ leg. et coll. E. Gallo. China, Qinghai Nanshan, Chaka Lake vic. m 3600, 11.VIII.1990, 1 ♂ leg. et coll. E. Gallo. China, Qinghai Qaidam Angutan, 3500 m, 22. VII. 1987, 1 ♂, 1 ♀ leg. Koiwaya, coll. W. Eckweiler. China, Qinghai, Balong m 3700, Tibetan Hospital, Borne 456, 4 ♂♂ and 2♀♀ leg. J. C. Lelong, coll. W. Eckweiler.

Diagnosis: Notwithstanding the strong individual variability, usual in all populations of H. autonoe, the new subspecies can be easily distinguished by the whitish postdiscal band that it constantly wider than in any other autonoe population. Additional diagnostic characters are the upperside light ground colour, especially evident in the females, and the prominent white lining of the hindwing underside.

Habitat: The new subspecies was found from the end of July to the first decade of August in some localities of Qinghai where this butterfly appears to be widespread. Most of the samples were recorded in the northern slopes of the Burhan Budai Shan, in an area of smooth valleys and steep hills at altitudes from 3500 to 4200 m, covered with grass and sparse bushes (Plate B). The whole area is characterized by a subalpine semi-arid climate, with long very cold winters and warm summers. At the lower altitude of 3300-3700m, the majority of arcceellae specimens were females and most of them were worn, suggesting that the flight period begins at the end of June. A few, fresher individuals were sampled at higher locations.

Other butterflies flying in the area included Parnassius szechchienii, P. nomion koiwayai, P. epaphus cfr. tsaidamensis, Balitia butleri, Pontia chloridice, P. callidice, Colias wanda, Melitaea arcesia, Argynnis clara, Boloria sifanica, Coenonympha amaryllis, C. semenovi, Paroeneis pumilus buddha, Oeneis buddha kincli, Polyommatus cfr. erotides, Plebeius cfr. qinghaiensis, Albulina orbitulus.

Distribution: The range of Hipparchia autonoe arcceellae includes a wide area of Qinghai, extending from Xining to 400 km Eastwards and includes Qilian Shan, Burhan Budai Shan and other mountain ranges of this region.

Geographical variation of H. autonoe in China

As already outlined, Kudrna considered most of the H. autonoe populations to belong to the same nominal subspecies, showing a great extent of individual variation. However, if we take a closer look at the geographic variation, especially in Central China area, we are able to detect constant and discriminating characters of wing pattern and/or male genitalia, which allow to distinguish between geographically different groups of populations. (Plate A)

Individuals belonging to typical forms of H. a. maxima, H. a. celtaeno and now the new subspecies H. a. arcceellae are easily
Figure 2: Each row illustrates a single subspecies of *H. autonoe*: males (recto/verso), females (recto/verso), and male genitalia drawings.

First element of the first row: *H. autonoe arcellae n. ssp.*, holotype ♂ from China, Qinghai, Haixi Mongolian-Tibetan Autonomous Prefecture, Burhan Budai Shan, Balong, m 3300-3700.
distinguishable from each other by wing pattern, but other samples from Gansu also appeared phenotypically different from Russian and Mongolian *H. autonoe autonoe* samples, suggesting the need of a closer look into the male genitalia. Results from a Canonical Variate Analysis (Discriminant Analysis) performed on the measured male genitalia from 25 specimens from eight localities are illustrated in Figure 2. The cumulative proportion of total dispersion for the first and second canonical variable was 0.99. This analysis showed that the 4 a priori established groups (subspecies samples) were distinguished from each other with 88% of correctly classified samples. Major loading on Axis 1 was from HAB (0.063) followed by LVA (-0.035) and LVD (-0.033). The first axis indicated a definitely superior distinctness of the LANB population from all others based on size and shape of male genitalia.

Figure 3: Balong area in the Burhan Budai Shan, the type locality of *Hipparchia autonoe arcella* n. ssp.

Figure 4: Canonical variate analysis performed on measurements of male genitalia. Shapes encompass individuals within the same subspecies.
Discussion

Despite the extensive geographic distribution of H. autonoe, with populations from the Caucasus in Eastern Europe to Amur in Far Eastern Asia and southwards to Sichuan, a strong homogeneity was found in their male genitalia. The eight studied populations belonged to four different subspecies, mainly separated from each other based on wing patterns. Only specimens from Lanzhou (LANB, Gansu, China) showed distinctive characters in morphometric measurements of male genitalia. Lanzhou is located within the area from which the subspecies H. autonoe extrema (Alpheraky, 1889) was originally described. The difference between H. a. extrema (LANB) and other examined subspecies is mainly its larger global size of male genitalia, greater distance between junction tegument-brachium and end of the apex angularis (HAB) and longer valve (LVA, LVD).

Hence, Hipparchia autonoe occurs in this area of China with four very distinct forms that seem to have a mostly allopatric distribution, but with small overlapping zones (Plate B). One of these locations is Huangyuan where at least one individual (female) with typically arcellae phenotype and one male with very contrasting extrema-like color were observed: these data could suggest a certain degree of admixture. Another unusual situation appears to exist in the surroundings of Xiahe / Labrang Monastery where a small series of individuals, dark brown, similar to ssp. celaeno of Tibet, has recently been added to a small sample of individuals with extrema phenotype. Unfortunately, the collecting data are not georeferenced, and we cannot know how far the two collection sites are from one another, and if there are differences in habitat. However, samples and sampling sites are still scanty. They will probably increase in the future, to clarify the occurrence and the extent of any hybrid zone or overlapping areas.

The presence of distinct geographic races in a relatively small area, opposed to the relative phenotypic homogeneity of the H. autonoe populations in the rest of its vast range raises some questions about the evolutionary significance of this variation. A first hypothesis refers to a general aptitude for phenotypic change correlated with the characteristics of the present climate and habitat, even if to a lower degree, as has been suggested for other species of Hipparchia (DENNIS & SHREEVE 1989). The extent to which wing morphology is an expression of wing pattern related to the environment, reflecting a wide range of variation and/or phenotypic plasticity, needs to be explored.

A second hypothesis addresses the history of these butterflies and their alleged confinement to refugia during the last critical phase of the Pleistocene, followed by subsequent geographical expansion in the Holocene (LÓPEZ-PUJOL et al. 2011). Unfortunately, the few available mtDNA sequence data useful for a phylogeographic approach are limited to South Korean and some Mongolian populations, and do not include the populations under discussion (CHO et al. 2011).

Recent studies of molecular phylogeography of conifers of the genera Abies and Cupressus (WANG et al. 2011, XU et al. 2010) indicate that in the mountain areas of Gansu and Shaanxi some taxa have experienced, during preglacial and glacial periods, confining conditions and isolation in refugia. This would explain the high intra-population variability and the genetic diversity of geographically close populations. The study of genetic markers has also highlighted complex hybridization and introgressive phenomena, which, while clarifying the role of evolutionary mechanisms, do not facilitate delimitation of species at the taxonomic level.

On the other hand, many species of predominantly steppe plants including various Berberidaceae, Astragalus etc. seem to have originated in the Qinghai-Tibetan Plateau and subsequently spread to Europe across Mongolia, Siberia and Central Asia. This phenomenon has been reported as "Out of the Qinghai-Tibet Plateau" (ZHANG et al. 2007, ZHANG et al. 2009, JIA et al. 2012). Processes of vicariance and dispersal, as reported for plants, could have affected other taxa such as butterflies and explain the high morphological diversity and the small-scale geographical variation of Hipparchia autonoe in Qinghai, Gansu and N Sichuan. According to this hypothesis, the great uniformity of the Eurasian populations is likely to be the result of their quite recent expansion.

Figure 5. Geographic range of the H. autonoe subspecies. Symbols legend: H. autonoe autonoe, light blue circles; H. a. arcellae purple circles; H. a. celaeno blue triangles; H. a. extrema, green diamonds; H. a. maxima, black squares; H. a. zezutonis, red star.
Acknowledgements

We are indebted to John G. Coutsis for the genitalia drawings used in this paper and to Dr. Marco Lucarelli for measuring male genitalia used for morphometric analyses. We are grateful to Dr. Stefano De Felici for his help in map drawings, and to Dr. Luca Bartolozzi, Filippo Fabiano and Saulo Bambi (“La Specola” Museum of Natural History of the University of Florence) for providing photographs of a historical specimen of *H. autonoe celaeno*. We warmly thank Dr. Enrico Gallo who participated with the senior authors in the early Qinghai expedition, as well as Dr. Wolfgang Eckweiler; both provided additional specimens of the new subspecies for the description and the type series.

References

Authors' addresses:

Prof. Valerio Sbordoni and Prof. Donatella Cesaroni
Department of Biology
University of Roma “Tor Vergata”
00133 Roma, Italy

Ing. Gian Cristoforo Bozano
Viale Romagna, 76
20133 Milano, Italy

Table I. Sample localities of specimens used for male genitalia morphology

<table>
<thead>
<tr>
<th>population code</th>
<th>measured specimens</th>
<th>subspecies</th>
<th>localities and date of collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUR 5</td>
<td>arcellae</td>
<td>China - Qinghai - Burhan Badai (Bu'erhan Buda Shan), 3400-3700m, 7.VII.90</td>
<td></td>
</tr>
<tr>
<td>CHA 2</td>
<td>arcellae</td>
<td>China - Qinghai - North of Chaka Lake (Chakayan Lake), 3500-3700m, 10.VIII.90</td>
<td></td>
</tr>
<tr>
<td>GHA 3</td>
<td>celaeno</td>
<td>China - Gansu - Xihai (270 km from Lanzhou), 3000-3500m, 15-30.VIII.90</td>
<td></td>
</tr>
<tr>
<td>TEV1 4</td>
<td>autonoe</td>
<td>Mongolia, Terej Natl. Park, 21.VII.88</td>
<td></td>
</tr>
<tr>
<td>BLA 2</td>
<td>autonoe</td>
<td>Russia - Blagovesheznk (Oblast of Amur), 21.VII.88</td>
<td></td>
</tr>
<tr>
<td>KRA 1</td>
<td>autonoe</td>
<td>Russia - Central Siberia, Krasnojarks, 11.VI.68</td>
<td></td>
</tr>
<tr>
<td>ALT 2</td>
<td>autonoe</td>
<td>Russia - Altai Mts., Kurai village, 1600m, 7.V.67 and 16.7.VII.68</td>
<td></td>
</tr>
<tr>
<td>LANB 6</td>
<td>extrema</td>
<td>China - Gansu - Lanzhou, 1900m, 13.VII.90</td>
<td></td>
</tr>
</tbody>
</table>